S-parts of sums of terms of linear recurrence sequences
نویسندگان
چکیده
Let $$S= \{ p_1, \ldots, p_s\}$$ be a finite, non-empty set of distinct prime numbers and $$(U_{n})_{n \geq 0}$$ linear recurrence sequence integers order at least 2. For any positive integer k, $$w = (w_k, w_1)\in\mathbb{Z}^k, w_1, w_k\neq 0$$ we define $$(U_j^{(k, w)})_{j\geq 1}$$ an increasing composed the form $$|w_kU_{n_k} +\cdots + w_1U_{n_1}|$$ , $$ n_k>\cdots >n_1$$ . Under certain assumptions, prove that for $$\varepsilon >0$$ there exists $$n_{0}$$ such $$[U_j^{(k,w)}]_S < (U_j^{(k, w)})^{\varepsilon},$$ $${\rm for}\, j > n_0$$ where $$[m]_S$$ denotes S-part m. On further assumptions on also compute effective bound $$[U_j^{(k, w)}]_S$$ $$(U_j^{(k,w)})^{1-c}$$ c is constant depending only r, $$a_1$$ ., $$a_r$$ $$U_0$$ $$U_{r-1}$$ $$w_1$$ $$w_k$$ S.
منابع مشابه
S-parts of terms of integer linear recurrence sequences
Let S = {q1, . . . , qs} be a finite, non-empty set of distinct prime numbers. For a non-zero integer m, write m = q1 1 . . . q rs s M , where r1, . . . , rs are non-negative integers and M is an integer relatively prime to q1 . . . qs. We define the S-part [m]S of m by [m]S := q r1 1 . . . q rs s . Let (un)n≥0 be a linear recurrence sequence of integers. Under certain necessary conditions, we ...
متن کاملa study of translation of english litrary terms into persian
چکیده هدف از پژوهش حاضر بررسی ترجمه ی واژه های تخصصی حوزه ی ادبیات به منظور کاوش در زمینه ی ترجمه پذیری آنها و نیز راهکار های به کار رفته توسط سه مترجم فارسی زبان :سیامک بابایی(1386)، سیما داد(1378)،و سعید سبزیان(1384) است. هدف دیگر این مطالعه تحقیق در مورد روش های واژه سازی به کار رفته در ارائه معادل های فارسی واژه های ادبی می باشد. در راستای این اهداف،چارچوب نظری این پژوهش راهکارهای ترجمه ار...
15 صفحه اولLinear Recurrence Relations for Sums of Products of Two Terms
For a sum of the form ∑ k F (n, k)G(n, k), we set up two systems of equations involving shifts of F (n, k) and G(n, k). Then we solve the systems by utilizing the recursion of F (n, k) and the method of undetermined coefficients. From the solutions, we derive linear recurrence relations for the sum. With this method, we prove many identities involving Bernoulli numbers and Stirling numbers.
متن کاملOn Prime Factors of Terms of Linear Recurrence Sequences
whenever (un) ∞ n=0 is a non-degenerate linear recurrence sequence. Mahler’s proof is not effective in the following sense. Given a positive integer m the proof does not yield a number C(m) which is effectively computable in terms of m, such that |un| > m whenever n > C(m). However, Schmidt [31, 32], Allen [1], and Amoroso and Viada [2] have given estimates in terms of t only for the number of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica Hungarica
سال: 2022
ISSN: ['0001-5954', '0236-5294', '1588-2632']
DOI: https://doi.org/10.1007/s10474-022-01283-6